(29) **J.** Rie and **J.** P. Oliver, to be submitted for publication.

(28) D. C. Poulter, R. **S.** Boikess, J. **I.** Brauman, and **S.** Winstein, *J. Am.*

(30) T. B. Stanford, Jr., and **K.** L. Henold, *Inorg. Chem.,* **14,** 2426 (1975). (31) E. A. Jeffery, T. Mole, and **J.** K. Saunders, *Aust. J. Ckem.,* 21,649 (1968). (32) N. S. Ham, **E.** A. Jeffery, and T. Mole, *Aust. J. Ckem.,* 21,2687 (1968). (33) E. C. Ashby, J. Laemihle, and G. **E.** Parris, *J. Organomet. Chem.,* 19,

- (26) P. G. Perkins, Abstracts, 3d International Symposium on Organometallic
Chemistry, Munich, 1967, p 348; A. H. Cowley and W. D. White, J.
Am. Chem. Soc., 91, 34 (1969).
(27) P. A. Scherr and J. P. Oliver, J. Mol. Spectr
	- (34) E. **A.** Jeffery and T. Mole, *Aust. J. Chem.,* **23,** 715 (1970). (35) E. A. Jeffery and T. Mole, *Aust. J. Chem.,* **26,** 739 (1973).
	- (36) T. L. Brown and L. L. Murrell, *J. Am. Chem. Soc.,* 94, 378 (1972). (37) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory", McGraw-Hill, New York, N.Y., 1970.
	- - (38) J. N. Murrell, M. Randic, and D. R. Williams, *Proc. R.* Soc. *London, Ser. A,* 284, 566 (1965).
		- (39) A. H. Cowley and W. D. White, *J. Am. Chem.* Soc., **91,** 34 (1969).
		- (40) K. A. Levison and P. G. Perkins, *Theor. Chim Acta,* 17, 15 (1970). (41) K. A. Levison and P. G. Perkins, *Discuss. Faraday* Soc., 47,183 (1969).
		- 2025 (1971). (42) K. Ohkubo, H. Shimada, and M. Okada, *Bull. Chem. Soc., Jpn.,* 44,

Contribution from Department of Chemistry, McMaster University, Hamilton, Ontario, L85 4M 1, Canada, and the Central Research and Development Department, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Oxidation States in "VSb04"

Chem. Soc., 94, 2291 (1972).

T. BIRCHALL and A. W. SLEIGHT*

Received July 28, *I975* AIC50553C

Antimony Mossbauer studies show that compositions approaching VSb04 contain Sb only in the pentavalent state. Thus, contrary to earlier proposals, the oxidation states are best represented as V^{III}Sb^VO4. Actually, stoichiometric VSbO₄ could not be prepared. Phases close to this composition have rutile-related structures, and they can be represented by formulas such as $V_{1-x}Sb_{1-x}O_4(M_{1-x}O_2)$ or $V_{1+y}Sb_{1-y}O_4(MO_2)$.

Introduction

The synthesis of VSb04 was first reported by Vernon and Milligan.1 These authors observed a tetragonal rutile-type structure and indicated oxidation states of Sb³⁺ and V⁵⁺. Roth and Waring² confirmed the rutile-like structure of VSbO₄, and they also suggested the existence of a high-temperature polymorph of VSb04. Schuer and Klemm3 studied the magnetic properties of VSb04 and concluded that the oxidation states could not be Sb³⁺ and V⁵⁺. However, Schuer and Klemm could not decide between V^{1V}Sb^{IV}O₄ and V^{III}Sb^VO₄. These two possibilities can easily be distinguished by means of ¹²¹Sb Mossbauer spectroscopy, and our investigation of this system is reported here.

Experimental Section

The reactants were high-purity Sb_2O_3 and V_2O_5 . Gold reaction containers were used since reactions with both platinum and silica were detected. Some preparations were carried out in air; others were in gold tubes which had been evacuated and welded shut.

X-ray powder patterns were obtained at 25 $^{\circ}$ C with a Hagg-Guinier camera using Cu $K\alpha_1$ radiation and an internal standard of high-purity KCl $(a = 6.2931 \text{ Å})$. Cell dimensions were refined by least squares.

Mossbauer spectra were recorded on apparatus previously described.⁴ Absorbers were prepared by intimately mixing the finely powdered sample with Apiezon grease and placing it between thin aluminum sheets in a copper holder. The samples contained 6 mg of Sb/cm^2 . The source $BaSnO₃$ (¹²¹Sb) was kept at room temperature (298 K) while the sample temperature was varied.4 About 150000 counts per folded channel were accumulated using the escape peak from a Xe-CO2 proportional counter. Isomer shifts were measured with respect to InSb at **4** K. Spectra were computer fitted to both a single Lorentzian⁵ and an eight-line quadrupole spectrum.⁶

Results

When $VSDO₄$ is prepared in air at 800 °C according to the original synthesis given by Vernon and Milligan,¹ some oxidation occurs. Our analytical data indicate VSb04.35 or, more correctly, Vo.92Sbo.9204. Our tetragonal cell dimensions for this oxidized VSb04 are given in Table I. Microprobe examination of this product indicates that it is homogeneous.

Preparations in sealed gold tubes did not give single-phase products when the heating, temperature was in the range

* To whom correspondence should be addressed at Du Pant.

^a Reference 1; really $V_{1-x}Sb_{1-x}$ ^a Reference 1; really $V_{1-x}Sb_{1-x}Q_2$. ^o Reference 2; really $V_{1+y}Sb_{1-y}Q_2$. ^c Reference 3; however, monoclinic cell is changed from second setting to first setting and 3.595 **A is** corrected to 4.595 A. α This work; monoclinic cell, $V_{1.05}Sb_{0.95}O_4$. ϵ This work; C-centered orthorhombic cell (V/2). *f* This work; $Sb_{0.92}O_4.$

700-800 °C. The products consisted primarily of a tetragonal rutile-type phase, but there were small amounts of $Sb₂O₄$ present. This indicates that the formula of the rutile phase was actually $V_{1+y}Sb_{1-y}O_4$ where *y* is of the order of 0.1. When this sample was quenched from 900 °C, the product appeared to be single phase by x-ray diffraction. However, microprobe studies showed small domains of an antimony oxide. These domains are amorphous. Their composition is not accurately known, but this glassy state may be stabilized by small amounts of vanadium. In any event, the vanadium-toantimony ratio in the predominate rutile-related phase must be greater than 1. Based on a semiquantitative microprobe analysis, this phase will be referred to as $V_{1.05}Sb_{0.95}O₄$.

Four-probe electrical resistivity data for the very dense quenched product containing **VI** .05Sb0.9504 and amorphous antimony oxide showed semiconducting behavior with a room-temperature resistivity of 10⁵ ohm-cm and an activation energy of 0.3 eV. These data should be reasonably representative of V_{1.05}Sb_{0.95}O₄ since the amorphous inclusions were clearly isolated from one another according to the microprobe studies.

The structure of $V_{1.05}Sb_{0.95}O_4$ quenched from 900 °C is clearly not tetragonal. We find that a C-centered orthorhombic cell will give an excellent account of the diffraction pattern. The cell dimensions are given in Table I, and the indexed pattern is in Table 11. In this orthorhombic cell the tetragonal *a* has been increased by the factor of $2^{1/2}$. A

Ι	h	k	l	$d_{\rm obsd}$	$d_{\rm{calcd}}$	
W	1	1	0	4.622	4.608	
s	2	$\mathbf 0$	0	3.267	3.264	
s	0	2	0	3.259	3.253	
W	0	0	1	3.066	3.085	
$s +$	ı	1	1	2.566	2.564	
m	\overline{c}	\overline{c}	0	2.305	2.304	
$m-$	2		ı	2.241	2.242	
$m-$	0	$\frac{0}{2}$	1	2.238	2.238	
W		$\overline{\mathbf{3}}$	0	2.058	2.058	
	$\frac{1}{3}$	1	0		2.064	
s	3	ī	ı	1.714	1.715	
S	1	$\overline{\mathbf{3}}$		1.712	1.712	
m-	$\overline{\mathbf{4}}$	0	0	1.633	1.632	
$m-$	0	4	0	1.626	1.626	
m	0	0	2	1.542	1.543	
$m-$	4	4	$\overline{2}$	1.459	1.459	
$m-$	$\overline{2}$	4	0	1.456	1.456	
	0	\mathbf{c}	2		1.394	
m	$\mathbf{2}$	$\bf{0}$	ا 2	1.394	1.395	
$m+$	3	3	1	1.375	1.375	
W	$\overline{2}$	$\overline{2}$	$\overline{2}$	1.285	1.282	
	$\bullet \bullet$					

Table 111. Mossbauer Parameters for "VSbO,"

 a **Fitted to a single Lorentzian.** b **This spectrum could not be satisfactorily fitted to either a single Lorentzian** or **the eight-line quadrupole pattern. The spectrum is broadened due to** *the* **pres- ence of a small magnetic hyperfine field,**

monoclinic cell with $a = b$ and $\gamma \neq 90^{\circ}$ could as well be used. However, we find no justification for this lower symmetry cell.

The quenched product containing $V1.05Sb0.95O4$ plus antimony oxide was heated in air at 20 $\rm{°C/min}$ in a tga apparatus. Weight gain became noticeable at about 270 "C and ceased at about 750 \degree C. The total weight gain corresponded to an oxidation to VSbO4.35 or V0.92Sb0.92O4. This is in excellent agreement with the analysis of the air preparation.

The 121Sb Mossbauer data are summarized in Table **I11** and Figure 1. These data clearly indicate that the antimony is predominantly in the pentavalent state; no evidence for an Sb³⁺ resonance was found in either the quenched or the oxidized form of "VSb04".

Discussion

Stoichiometric VSb04 was not prepared. Instead, phases of the type $V_{1-x}Sb_{1-x}O_4(M_{1-x}O_2)$ and $V_{1+y}Sb_{1-y}O_4(MO_2)$ were apparently formed. Of course, combinations of these presumably occur, and this leads to even more complex situations. No attempt was made to determine the limits of *x* and *y.*

The Mossbauer studies show that these phases close to the VSb04 composition contain antimony predominantly in the pentavalent state. Thus, the formulas for nonstoichiometry may be rewritten as $V^{III}_{1-9x}V^{IV}_{8x}Sb^{V}_{1-x}O_4$ and $V^{III}_{1-y}V^{IV}_{2y}Sb^{V}_{1-y}O_4$. The latter formula maintains the ideal metal-to-oxygen ratio of the rutile structure. This phase may be considered to be a solid solution between VO₂ and VSbO₄. The oxidation states in $V_{1.05}Sb_{0.95}O_4$ would be V^{III} 0.95 V^{IV} 0.1Sb^V0.95O4.

Nonstoichiometry is known in the rutile structure. Solid solutions in the TiO₂-Ta₂O₅ and TiO₂-Nb₂O₅ systems are

Figure 1. ¹²¹ Sb Mössbauer spectra of V_{1.05}Sb_{0.95}O₄ at (a) 77 K **and (b)** 4 **K.**

reported^{10,11} to give cation-deficient phases such as Tio.69Nbo 2402(Mo.9302) and **Tio.82Tao.i402(Mo.9602).** Thus, these are analogous to Vo.92Sbo.9404 found in this investigation. The oxidation states in this particular composition are V^{III} _{0.28} V^{IV} _{0.64}Sb^V_{0.92}O₄.

Some cell dimensions of various preparations close to the VSb04 composition are given in Table **I.** In view of the stoichiometry problems, the range in the cell dimensions is hardly surprising. It appears that the three previous investigationsl-3 actually had distinctly different phases. Vernon and Milligan¹ prepared their sample in air; thus, they presumably had a phase of the type $V_{1-x}Sb_{1-x}O_4$. Although we found *x* to be 0.08 for our air preparations, this value is likely to be somewhat sensitive to exact synthesis conditions.

Roth and Waring² prepared their samples at 700–800 °C in an evacuated tube. Thus, their products were presumably close to the VSb04 composition, but they were not single phase. The x-ray lines they attribute to a high-temperature polymorph of VSbO₄ actually are due to Sb₂O₄. Therefore, the tetragonal rutile phase reported by Roth and Waring presumably was of the type $V_{1+y}Sb_{1-y}O_4$. They also observed a glassy phase on quenching from above 800 °C.

Schuer and Klemm³ prepared their sample at 1050 \degree C in a sealed tube. They obtained a phase with a rutile-related structure, but with symmetry lower than tetragonal. Although Schuer and Klemm indicated monoclinic symmetry (Table I), we find that an orthorhombic distortion is adequate to account for the diffraction pattern. It is not clear if Schuer and Klemm considered the possibility of this symmetry. The product of Schuer and Klemm almost certainly contained some amorphous second phase which they did not detect.

The Mossbauer parameters obtained for "VSb04" confirm Schuer and Klemm's conclusions, based on magnetic data,³ that VVSbI1104 is not tenable. Furthermore, the presence of only an Sb^{5+} resonance clearly rules out VIVSbIVO₄, which should show two ¹²¹Sb Mossbauer resonances like Sb_2O_4 , ^{7,8} therefore establishing the formula as $V^{\text{III}}Sb^{\text{V}}O4$. The stability of the V^{3+} under the preparation conditions is rather remarkable since, at 900 \degree C, Sb₂O₅ undergoes reduction to the mixed oxide Sb_2O_4 , and one might have expected Sb_5 ⁺ to oxidize V^{3+} to V^{4+} or even V^{5+} . Of course, the oxidation states in "VSb04" at higher temperatures are not necessarily the same as those at room temperature.

Wooten, Long, and Bowen⁹ have recently reported ^{121}Sb Mossbauer data for a number of metal antimonates with the rutile structure. Our data are in good agreement with theirs. There appears to be a trend of increasing isomer shifts (mm s^{-1}) from VSbO₄ (8.20) through CrSbO₄ (8.35) to FeSbO₄ (8.43). Quadrupole splittings are small and appear to be negative though computer fits to positive values were almost as good. Oxidized VSb04 has a larger quadrupole splitting than the stoichiometric compound, possibly due to a greater

870 *Inorganic Chemistry, Vol. 15, No. 4, I976*

departure from ideal stoichiometry.

One further point of interest in $V\text{SbO}_4$ is the presence of magnetic ordering at **4** K. Figure 1 shows the effect on the spectrum of lowering the temperature from *77* to **4** K. This broadening can only be due to magnetic hyperfine splitting, which must arise from an ordering of the $V³⁺$ spins and be transferred to the antimony sites through the oxygen linkages in the structure. The magnetic data of Schuer and Klemm3 also indicate that " $VSbO₄$ " becomes magnetically ordered below 90 K.

Acknowledgment. We are grateful to **J.** L. Gillson for the electrical resistivity data.

Registry No. VSbQ4, 58 151-20-5; IZISb, 14265-72-6.

Hiroshi Tomiyasu and Gilbert Gordon

References *rand* **Notes**

- L. W. Vernon and W. *8.* Milligan, *Tex. J. Sei.,* **3,** 82 (1951).
- $\frac{(2)}{(3)}$
- R. S. Roth and J. L. Waring, *Am. Mineral.*, **48**, 1348 (1963).
H. Schuer and W. Klemm, *Z. Anorg. Allg. Chem.*, 395, 287 (1973).
T. Birchall, R. J. Bouchard, and R. D. Shannon, *Can. J. Chem*., 51, 2077 λ
- (1973).
- *G.* **M.** Bancroft, W. K. Cling, **A.** F. Maddock, R. K. Prime, and **A. J.** (5) Stone, *J. Chem. Soc. A*, 1966 (1967).
T. Birchall and B. Della Valle, *Can. J. Chem.*, 49, 2808 (1971).
G. G. Long, J. G. Stevens, and L. H. Bowen, *Inorg. Nucl. Chem. Lett.*,
-
- (7) **5.** 799 (1969).
- T. Birchall and B. Della Valle, *Chem. Commttn., 675,* (1970). 7qi
- J. **B.** Wooten, **G.** G. Long, and L. H. Bowen, *J. Inorg. Nucl.* Chem., *34,* 2177 (1974).
- R. **S.** Roth and L. **W.** Coughernour, *J. Res. Nag/. Bur. Stand.,* **55, 21** ^I (**1955).**
- J. L. Waring and R. S Roth, *J. Res. Natl. Bur. Stand., Sect. A, 12,* 177 (1 968).

Contribution from the Departments of Chemistry, Faculty of Science, Shinshu University, Matsumoto, Japan 390, and Miami University, Oxford, Ohio 45056

Ring Closure in the Reaction of Metal Chelates. Formation of the Bidentate Oxovanadium(lV)-Glycing Complex

HIROSHI TOMIYASU and GILBERT GORDON*

Received September 3, *1975* ATC50657N

The details of the rate of ring closure for the monodentate glycinatooxovanadium(1V) species have been studied by both stopped-flow and temperature-jump techniques. The rate corresponds to 35 **s-l** at 25 'C and the values of the activation parameters are 13.6 kcal/mol for ΔH^* and -5.8 eu for ΔS^* . Various potential mechanisms are discussed and the direct interaction between the nitrogen of the monodentate glycine and the trigonal face of the oxovanadium (IV) complex is presented as the most reasonable alternative. Appropriate rate constants are calculated in terms of this mechanism.

Introduction

The reactions between metal ions and various bidentate ligands are of considerable interest.¹⁻¹¹ The rates and mechanisms of processes involving bidentate ligands have received particular attention.⁸⁻¹¹ Oxovanadium(IV) appears to be quite interesting in this context in that it has a dl electronic configuration and is readily amenable to studies of both oxidation-reduction^{12,13} and substitution processes.⁸⁻¹⁰ In this paper, we present a detailed study of the rate of ring closure for monodentate glycinatovanadium (IV) in which the final product is the bidentate complex. The system is characterized by equilibria 1-11 at 25 °C.

For the purpose of convenience, the oxotetraaquovanadi $um(IV)$ ion will be written as VO^{2+} or oxovanadium(IV) and glycine will be abbreviated as HGly. When glycine is coordinated as a monodentate ligand, the complex is written as VOHGly2+. The formula VOGly+ represents the deprotonated form of VOHGly²⁺. For glycine functioning as a bidentate ligand, the complex is specified as $VO(Gly)^+$. The

To whom correspondence should be addressed at Miami **University.**

Scheme I

structures and equilibrium^{$1,10$} relationships between oxovanadium(1V) and the various monoglycinato complexes are shown diagrammatically in Scheme I.

The rate of water exchange in the equatorial position for oxovanadium(IV) has been reported^{14,15} as 5.2×10^2 s⁻¹ and the rate of VOHGly²⁺ formation¹⁰ from oxovanadium(IV) and HGly is 1.3×10^3 M⁻¹ s⁻¹. The corresponding rate of dissociation is 4.6×10^2 s⁻¹.

Experimental Section

The stock solution of oxovanadium(1V) was prepared by electrolytically reducing a slurry of vanadium pentoxide in perchloric acid as has been described previously.^{10,16} The stock solution gave negative tests17 **for** both vanadiurn(II1) and vanadiurn(V). The oxovanadium(1V) solutions were analyzed by titration with standard **KMn04.** The total acid concentration was determined by passing aliquots of the stock solution through a Dowex **5O-X8** cation-exchange column and by titrating the eluent with standard NaOH to the phenolphthalein end point. The acid concentration was obtained by making corrections